On Cremona Transformations of P Which Factorize in a Minimal Form
نویسنده
چکیده
We consider Cremona transformations of the complex projective space of dimension 3 which factorize as a product of two elementary links of type II, without small contractions, connecting two Fano 3-folds. We show there are essentially eight classes of such transformations and give a geometric description of elements in each of these classes.
منابع مشابه
Cremona Transformations with an Invariant Rational Sextic
I t is well known that a Cremona transformation T with ten or fewer jF-points will transform a rational sextic S into a rational sextic S' when the F-points of T are all located at the nodes of S. I have shown (cf. [ l ] , p. 248, (9); [2], p. 255, (5)) that, even though the number of transformations T of the type indicated is infinite, the transforms S' are all included in 2 • 31 -51 classes, ...
متن کاملOn Characteristic Classes of Determinantal Cremona Transformations
We compute the multidegrees and the Segre numbers of general determinantal Cremona transformations, with generically reduced base scheme, by specializing to the standard Cremona transformation and computing its Segre class via mixed volumes of rational polytopes. Dedicated to the memory of Shiing-Shen Chern
متن کاملOn conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملOn p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013